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33 RASHO: A Restricted Additive Schwarz Preconditioner
with Harmonic Overlap
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Introduction

A restricted additive Schwarz (RAS) preconditioning technique was introduced recently for
solving general nonsymmetric sparse linear systems [BGMS97, CFS98, CS99, FS01, GKK+00,
LSHF01, SK00, QV99]. The RAS preconditioner improves the classical additive Schwarz
preconditioner (AS), [SBG96], in the sense that it reduces the number of iterations of the iter-
ative method, such as GMRES, and also reduces the communication cost per iteration when
implemented on distributed memory computers. However, RAS in its original form is a non-
symmetric preconditioner and therefore can not be used with the Conjugate Gradient method
(CG). In this paper, we provide an extension of RAS for symmetric positive definite prob-
lems using the so-called harmonic overlaps (RASHO). Both RAS and RASHO outperform
their counterparts of the classical additive Schwarz variants. Roughly speaking, the design of
RASHO is based on a deeper understanding of the behavior of Schwarz type methods in the
overlapping regions, and in the construction of the overlap. Under RASHO, the overlap is
obtained by extending the nonoverlapping subdomains only in the directions that do not cut
the boundaries of other subdomains, and all functions are made harmonic in the overlapping
regions. As a result, the subdomain problems in RASHO are smaller than those of AS, and
the communication cost is also smaller when implemented on distributed memory computers,
since the right-hand sides of discrete harmonic systems are always zero which does not need
to be communicated. We will show numerically that the RASHO preconditioned CG takes
fewer iterations than the corresponding AS preconditioned CG. An almost optimal conver-
gence theory will be presented for the RASHO for elliptic problems discretized with a finite
element method.

Recall that the basic building blocks of classical Schwarz type algorithms are the opera-
tions of the form ��������
	 ������
����� ���� , where ���� is the subdomain matrix and ���� is the restriction
operator for the extended subdomain (formal definitions will be given later in the paper). The
multiplication of the such an operator with a vector, � , is realized by solving the linear system

� ������ � �� � (1)

on each extended subdomain. The key idea of RAS is that equation (1) is replaced by

� �������� � inside the unextended subdomain�
in the overlapping part of the subdomain.

(2)
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Note that the solution of (2) is discrete harmonic in the overlapping part of the subdomain,
and therefore carries minimum energy in some sense. In this paper, we further explore the
idea of “harmonic overlap” and at the same time keep the symmetry of the preconditioner.

The algorithm to be discussed below is applicable for symmetric positive definite prob-
lems. In order to provide a complete mathematical analysis, we restrict ourselves to the Pois-
son problem discretized with a finite element method. We consider a simple variational prob-
lem: Find ����� �� ��� �	� such that
 � � � � � ��� � � �
��� � ��� �� ��� �	� (3)

where 
 � � � � � ������� ��� � ����� and � � � � ������� ����� for � � �"! ��� �
#
For simplicity, let � be a bounded polygonal region in $ ! with a diameter of size % �'& � . The
extension of the algorithm and results to $)( can be carried out easily. Let *,+ ��� � be a shape
regular, quasi-uniform triangulation, of size % ��- � , of � and .���� �0/ � �� ��� � the finite element
space consisting of continuous piecewise linear functions associated with the triangulation.
We are interested in solving the following discrete problem associated with (3): Find �213� .
such that 
 � � 1 � � � �4� � � �	�5� � � . # (4)

Using the standard basis functions, (4) can be rewritten as a linear system of equations

� � 1 �4� # (5)

For simplicity, we understand �61 and � both as functions and vectors depending on the situa-
tion.

Notations

Let 7 be the total number of interior nodes of *8+ ��� � and 9 the set of nodes. We assume
that a node-based partitioning has been applied and resulted in : nonoverlapping subsets9 �� �<; � & �=#>#=#
� : , whose union is 9 . For each 9 �� , we define a region �@?� as the union
of all elements of * + ��� � that have all three vertices on 9 ���ACB � . We denote � as the
representative size of the subregion �)?� . We define the overlapping partition of 9 as follows.
Let DE9 ��GF be the one-overlap partition of 9 , where 9 ��IH 9 �� is obtained by including all
the immediate neighboring vertices of the vertices in 9 �� . Using the idea recursively, we can
define a J -overlap partition 9 �LKNM�PO � 9 ��G# JQ- is approximately the extend of the extension.

We next define a subregion of � induced by a set of nodes of *8+ ��� � as follows. Let R be
a subset of 9 . The induced subregion, denoted as ����R � , is defined as the union of: (1) the setR itself; (2) the union all the open elements (triangles) of *,+ ��� � that have at least one vertex
in R ; and (3) the union of the open edges of these triangles that have at least one endpoint as
a vertex of R . Note that ����R � is always an open region. The extended region ���� is defined as����9 �� � . We introduce the subspace

. ��NS .UT � �� ��� �� � extended by zero to �)VQ� �� #
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It is easy to check that

. � . �� � . �! � �>�=� � . �M #
This decomposition is used in defining the classical one-level additive Schwarz algorithm
without a coarse space [SBG96]. Let us define � ���� .�� . �� by
 ��� �� � � � � � 
 � � � � �	�5� � � . � � � � . �� # (6)

Then, the classical one-level additive Schwarz operator has the form

� � � � �� � �=�=� � � �M #
Let � �� � B � �� V B � ; i.e., the part of the boundary of � �� that does belong to the Dirichlet

part of the boundary. We define the interface overlapping boundary � � as the union of all � �� ;
i.e., � � � A M� O � � �� . We then define the following subsets of 9 :

� 9
	
� S 9 T�� � (interface nodes)

� 9
	
�� S 9
	

� T�9 �� (local interface nodes)

� 9 	
���
 ��� S 9 	

� T�9 �� (local internal interface nodes)

� 9
	
���
 ����� S 9
	

�� V 9
	
���
 ��� (local cut interface nodes)

� 9 ���
 ����� S ��9 �� V 9
	
�� � T � K����O � 9 �� � (local overlapping nodes)

� 9 ���
 ��� � S 9 �� V ��9
	
�� A 9 ���
 � ��� � (local nonoverlapping nodes)

� 9 ���
 ��� S 9 ���
 ��� � A 9
	
��!
 �"� (internal nodes)

We note that the notions of subdomains, harmonic overlaps, the classification of nodal
points can all be defined in terms of the graph of the sparse matrix.

We frequently use functions that are discrete harmonic at certain nodes. Let �$# � 9
be a mesh point and %'&�( � � � � . the finite element basis function associated with �)# ; i.e.,
%*& ( � �*# � � & , and %'& ( � � � � � � ��+-,�/. . We say � � . is discrete harmonic at �)# if
 � � � %*& ( � � �

. If � is discrete harmonic at a set of nodal points R , we say � is discrete
harmonic in ��� R � .

Our new algorithm will be built on 0. �� defined as a subspace of . �� . 0. �� consists of all
functions in . �� that vanish on 91	

���
 ����� and discrete harmonic at the nodes 9 ���
 ����� . Note that the

support of the subspace 0. �� is
29 �� S 9 �� VQ9 	

���
 ���3�
and, since the values at the harmonic nodes are not independent, they can not be counted
toward the degree of freedoms. The dimension of 0. �� is � ;�4 � 0. �� � �65 9 ��!
 �"� 5 # Let 0� �� S ��� 29 �� �
be the induced domain. It is easy to see that 0� �� is the same as � �� but with cuts. We have then
0. �� � .UT � �� � 0� �� � and discrete harmonic on � ���
 � ��� S ����9 ���
 ����� � . We define 0. � / . � as

0. � S 0. ��87 �>�=� 7 0. �M �
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which is a direct sum. We remark that functions in 0. � are, by definition, the sum of functions� � � 0. �� , ; � & � �=�>� � : . Functions in 0. � can, in fact, be characterized easily as in the
following lemma.

Lemma 1 [CDS01] If � � . and � is discrete harmonic at all the overlapping nodes, i.e., onA M� O � 9 ���
 ����� , then ��� 0. � .
RAS with Harmonic Overlap

Let 0���� � 0. � �/0. �� be a projection operator satisfying
 � 0� �� � � � � � 
 � � � � �
��� � � 0. � � � � � 0. �� # (7)

The RASHO operator can be defined as

0� � � 0� �� � �=�=� � 0� �M # (8)

Note that the solution � 1 of (5) is not, generally speaking, in the subspace 0. � , therefore, the
operator 0��� can not be used to solve the linear system (5) directly. We will need to modify
the right-hand side of the system; see Lemma 2. We will also show that the elimination of the
variables associated with the overlapping nodes is not needed in order to apply 0��� to a vector� � 0. � .

We now introduce the matrix form of (8). We define the restriction operator, or a matrix,
0���� as follows. Let � � � � � �=#>#=#>� � � �
	 be a vector corresponding to the nodal values of a
function ��� . ; namely for any node � � � 9 , � � � � � � � � . For convenience, we say “ � is
defined on 9 ”. Its restriction on

29 �� , 0���� � , is defined as

�
0� �� ��� � � � � ���� � � � if � � � 29 ���

otherwise.
(9)

The matrix representation of 0���� is given by a diagonal matrix with & for nodal points
in

2 9 �� and zero for the remaining nodal points. We remark that, by way of definition, the
operator 0���� is symmetric; i.e., ��0� ��
�
	 � 0���� . Use this restriction operator, we define the
subdomain stiffness matrix as

0� �� � 0� �� � � 0� ��
� 	 �
which can also be obtained by the discretization of the original problem on

2 9 �� with zero
Dirichlet data on nodes 9 V 2 9 �� . The matrix 0���� is block diagonal with blocks corresponding
to the structure of 0� �� and its inverse is understood as an inverse of the nonzero block. A
matrix representation of 0���� denoted also by 0���� is equal to

0� �� � � 0� �� � ��� �
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and

0� � � � � 0� � � � � � � �=�=� � � 0� �M � � � ��� # (10)

The next lemma tell us how to modify the system (5) so that its solution belongs to 0. � .
Lemma 2 [CDS01] Let � 1 and � be the exact solution and the right-hand side of (5), and

� � M� �PO � � 0� �� � � � 0�
�� � � (11)

where 0� �� is defined by (9) with J � �
. Then, we have 0�G1 � � 1�� � � 0. � is the solution of

the modified linear system of equations

� 0� 1 ��� � � � � 0� #
We remark that RASHO has several advantages over the classical AS. Let us recall AS

briefly. Let

� � �� ��� � � � � � �� � � � if � � � 9 ���
otherwise.

(12)

Then the AS operator takes the following matrix form

� � � � � � � � � � � � � � � �=�=� � ��� �M � � � � �M � � � (13)

where � �� � � �� � � � �� � 	 . We remark that the size of the matrix � �� is 5 9 �� 5 , which is bigger
than the size of the matrix 0���� , which is 5 29 �� 5 . In a distributed memory implementation, the
operation � �� � involves moving data from one processor to another, but the operation 0� �� �
does not involve any communication. In RASHO, if �U� 0. � , then it is easy to see that

0� �� � � � 0� ���
 �"� � � � (14)

where 0�����
 �"� is defined as �
0� ���
 ��� � � � � � � � �� � � � if � � � 9 ��!
 �"��

otherwise.
(15)

Therefore, for functions in 0. � , we can rewrite 0��� , as in (10), in the following form

0� � � � � 0� � � � � � 0� � � 
 �"� � �>�=� � � 0� �M � ��� 0� �M 
 ��� � � # (16)

Although the operator (16) does not look like a symmetric operator, it is indeed symmetric
when applying to functions in the subspace 0. � . The form (14) takes the advantage of the
fact that the operator 0�����
 ��� is communication-free in the sense that it needs only the residual

associated with nodes in 91	
��!
 �"� / � � � .
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We make some further comments on how the residual � � can be calculated in a distributed
memory environment, for a given vector ��� 0. � . In a typical implementation, the matrix � is
constructed and stored in the form of D 0� �� F , each processor has one or several of the subdo-
main matrix 0���� . Similarly � is stored in the form of D � � F , where � � � 0. �� . We note, however,
that to compute the residual at nodes 9 	

��!
 �"� some communications are required. The processor
associated with subdomain � �� needs to obtain the local solution from the neighboring subdo-
mains at nodes connected to 9 	

���
 �"� . It is important to note that the amount of communications
does not depend on the size of the overlap since only one layer of nodes is required. This
shows that, in terms of the communication cost, RASHO is superior to AS and RAS.

Main Results

The algorithm presented in the previous section is applicable for general sparse, symmetric
positive definite linear systems. The notions of subdomains, harmonic overlaps, the classifi-
cation of nodal points, etc, can all be defined in terms of the graph of the sparse matrix. The
following theorem provides a nearly optimal estimate of the condition number of the RASHO
operator 0��� in terms of the fine mesh size - , the subdomain size � , and the overlapping factorJ for a Poisson equation discretized with a piecewise linear finite element method. We note
that because we do not include a coarse space, the constant will depend on the subdomain size� .

Theorem 1 [CDS01] The RASHO operator 0� � is symmetric in the inner product 
 � � � � � , non-
singular, and bounded in the following sense� � !� 
 � � � � ��� 
 ��0� � � � � ��� � � 
 � � � � ��� ��� 0. � # (17)

Here� !� � ��� �'& �����
	 ��J � & � � � & �����
	 � � -��
� � &� ! � & ������	 � J � & � � �
���QJ � & � -���� #

The constants
� � � ��� �

are independent of - , � , and J .
We remark that the corresponding convergence rate estimate for the regular one-level AS

[DW94], in terms of the constant
� � , is� !� � � � & � &� ���QJ � & � - � #

The lower bound
� !� of RASHO is theoretically slightly worse than the lower bound of

AS in the case of large overlap, but roughly the same for the case of small overlap. On the
other hand, the upper bound

� � of RASHO is better, since the overlap bewteen subspaces 0. �#
is generally smaller than the overlap between subspaces . �# . Because of the smaller upper
bound, the numerical performance of RASHO presented in the next section is better than
that of AS. It is interesting to point out that, for the case of generous overlap, our estimate
is equivalent to the estimate for the iterative substructuring algorithms [DSW94] without a
coarse space. We also remark that the results of the paper is for only one-level Schwarz
algorithms. Because of the “harmonic overlap” requirement, the extension of the algorithm to
multiply levels is not as trivial as the multilevel AS.
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Table 1: RASHO and AS preconditioned CG for solving the Poisson equation on a & � ��� & � �
mesh decomposed into � � � ��� subdomains with overlap = �����	� . The AS/CG results are
shown in � � . The “+1” is for the preprocessing step needed for RASHO.

���
��� iter cond max min
0 42 (42) 129.(129.) 1.98 (1.98) 0.0154 (0.0154)
1 24+1 (28) 48.4 (86.3) 1.94 (4.00) 0.0402 (0.0464)
2 20+1 (23) 33.3 (51.8) 1.91 (4.00) 0.0574 (0.0773)
3 18+1 (20) 27.2 (37.0) 1.89 (4.00) 0.0694 (0.1081)

Table 2: RASHO and AS preconditioned CG for solving the Poisson equation on a �
��
� %�� � �
��
 � %�� mesh decomposed into
� %�� � � %�� subdomains with overlap = & .

� %�� � � %�� iter cond max min� � � 19+1 (20) 26.8 (43.7) 1.89 (4.00) 0.0708 (0.0916)
� � � 39+1 (42) 86.9 (145.) 1.95 (4.00) 0.0225 (0.0276)�����

75+1 (78) 328. (550.) 1.97 (4.00) 0.0060 (0.0073)&�� � &�� 147+1(156) 1295(2168.) 1.98 (4.00) 0.0015 (0.0018)

Numerical Experiments

We present some numerical results for solving the Poisson equation on the unit square with
zero Dirichlet boundary conditions. We compare the performance of RASHO/CG and AS/CG
in terms of the number of iterations and the condition numbers. We pay particular attention to
the dependence on the number of subdomains and the size of the overlap.

In order to use RASHO/CG, we need to modify the linear system by forcing its modified
solution to belong to 0. � . To do so, we use (11). The stopping condition for CG is to reduce
the energy norm of the initial residual by a factor of & � ��� . The exact solution of the equation
is taken to be � � � ��� � ������� &� "!�#�$�%'& �)( � � $�%*& �+( � � . All subdomain problems are solved exactly.
The iteration count (iter), the condition number (cond), the maximum (max) and minimum
(min) eigenvalues of the preconditioned matrix are summarized in Table 1, and Table 2. It
is clear that the newly introduced RASHO/CG is always better than the classical AS/CG in
terms of the iteration counts and the condition numbers. Although we do not have any parallel
results to report at this point, we are confident that RASHO/CG would be even better than
AS/CG on a parallel computers with distributed memory since much less communication is
required.
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