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Abstract. We compare several accounting based models for bankruptcy prediction. The models are de-
veloped and tested on large data sets containing annual financial statements for Norwegian limited liability
firms. Out-of-sample and out-of-time validation shows that generalized additive models significantly outper-
form popular models like linear discriminant analysis, generalized linear models and neural networks at all
levels of risk. Further, important issues like default horizon and performance depreciation are examined. We
clearly see a performance depreciation as the default horizon is increased and as time goes by. Finally a
multi-year model, developed on all available data from three consecutive years, is compared with a one-year
model, developed on data from the most recent year only. The multi-year model exhibit a desirable robustness
to yearly fluctuations that is not present in the one-year model.
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1. Introduction

Since the work of Beaver (1966) and Altman (1968), bankruptcy prediction have been studied actively by
academics and practitioners. This field of risk management continues to be very active, much due to the
continuous development of new financial derivatives. For example, the pricing of credit derivatives relies
on good estimates of counterparty risk. Two kinds of models are commonly addressed in the literature.
First, there are accounting based models, for example discriminant analysis and logistic regression models.
Second, there are market based models, for example Merton models (e.g. the Moody’s KMV model).
The market models are based on the value of a firm set by the market. Stock prices are commonly used
as proxies for the value. Consequently, market based models require that firms are registered on a stock
exchange and this is quite often not the case. In Norway the majority of limited liability firms are not
registered on any exchange. Hence, our focus is on accounting based models.

Linear discriminant analysis models have been widely used. Altmans popular Z-Score (Altman, 1968)
is for example based on linear discriminant analysis. Generalized linear models, or multiple logistic
regression models are also popular. Ohlsons O-Score (Ohlson, 1980) is based on generalized linear models
with the logit link function, also referred to as logit analysis. Neural network models are powerful and
popular alternatives, with the ability to incorporate a very large number of features in an adaptive
nonlinear model, see for example Wilson and Sharda (1994). See also Altman and Narayanan (1997) for
a survey of business failure classification models.

Our main objective is to introduce Generalized Additive Models (GAM) as a flexible non-parametric
alternative for bankruptcy prediction, and show that it performs significantly better than discriminant
analysis, linear models and neural networks. GAM is a generalization of the linear regression model. It
replaces the usual linear function of a covariate with a sum of unspecified smooth functions, helping us
discover potential non-linear shapes of covariate effects. The estimation of GAM and neural networks
is more computationally demanding than for linear models, but with the rapidly increasing power of
computers we expect an increasing application of such models in practice.
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We develop several models using the same explanatory variables. To compare the models we use the
validation methodology that is referred to as ”out-of-sample” and ”out-of-time” validation in Sobehart
et al. (2000). The data set used is an extensive collection of annual financial statements of Norwegian
limited liability firms in the period 1996 − 2000 as well as the year of bankruptcy for all firms that filed
for bankruptcy in the years 1996 − 2001.

In addition to model comparison we examine the sensitivity of the GAM model to default horizon,
and we test the depreciation of the prediction models, examining how the prediction power of a model
depreciates as time goes by. This is very important to consider when determining cut-off levels and also
when considering model risk. Finally the performance of a multi-year model, developed on statements
from three consecutive years, is compared with a one-year model, developed on statements from one year
only.

Section 2 describes the models we will examine. Section 3 describes the data set and the explanatory
variables, while Section 4 discusses model development and validation methodologies. Section 5 compares
the prediction power of various models, out-of-sample and out-of-time. Section 6 shows the sensitivity of
a GAM model to default horizon, while Section 7 shows the depreciation rate of a GAM model. Section
8 compares the performance of a multi-year model and a one-year model and finally, Section 9 presents
a summary of our findings.

2. Prediction Models

When handling bankruptcy data it is natural to label one of the categories as success (healthy) and the
other as failure (default) and to score these as 0 and 1 respectively. A typical data set will have a series
of ones and zeros as the response variable Y . Associated with each Y there will often be observations
on a set of explanatory variables X1,X2, . . . ,Xp. A bank will typically have information on the earnings
and debt of each customer.

Since Altman (1968) proposed to use Linear Discriminant Analysis (LDA) to predict bankruptcy,
several contributions have been made to improve Altman’s results, using different parametric, semipara-
metric and non-parametric models.

In contrast to normal-based regression models like the LDA, in which we wish to predict the value
Y , given values for the explanatory variables, we will also be interested in predicting the probability π
that Y = 1, given values for the explanatory variables (Krzanowski, 1998). Any probability is restricted
to take values between 0 and 1, but a linear model can give rise to any value between −∞ and ∞. It is
thus necessary to transform π into a quantity that takes values in the interval (−∞,∞) before a linear
model can be sensibly applied. There are several such transformations, or link functions. We will only
consider the logit link, ε = ln( π

1−π
), often denoted by ε = logit(π).

2.1. Linear Discriminant Analysis
Linear discriminant analysis (LDA) is a multivariate statistical technique that leads to the development of
a linear discriminant function maximizing the ratio of among-group to within-group variability, assuming
that the variables follow a multivariate normal distribution and that the dispersion matrices of the groups
are equal. Clearly, both of the assumptions pose a significant problem for the application of LDA in real-
world situations, since they are difficult to meet (Doumpos and Zopounidis, 1999).

2.2. Generalized Linear Models
Generalized Linear Models (GLM) is a generalization of the multiple regression model

Y = Xβ + ǫ, (2.1)

where ǫ has mean vector 0 and covariance matrix σ2
I. The generalization makes use of the exponential

family of distributions
f(y; θ, φ) = exp{[yθ − b(θ)]/a(φ) + c(y, φ)}, (2.2)



Bankruptcy Prediction by Generalized Additive Models1 3

for some specific functions a(·), b(·) and c(·), and parameters θ and φ. The GLM has the following
features:

(a) The Yi’s (i = 1, . . . , n) are independent random variables sharing the same form of distribution
from the exponential family.

(b) The explanatory variables provide a set of linear predictors η =
∑

j βjXj for j = 1, . . . , p.
(c) The link between 1 and 2 is that g(µ) = η, where µ is the mean of Y . g(·) is called the link function

of the model.

Two extensions of the multiple regression model (2.1) that characterize the GLM, are its applicability to
any member of the exponential family of distributions, and the presence of a link function when connecting
the linear predictor η to the mean µ of Y . This link is determined by the distribution of the random term ǫ
in (2.1). If ǫ is logistically distributed, we use the logit link and the GLM is referred to as the logit model.
We will consider the binomial distribution and the logit link function g(µ) = ln( µ

n−µ
). Re-expressing this

function in terms of π instead of µ, we obtain g(π) = ln( π
1−π

) or π =
exp(η)

1+exp(η) (Krzanowski, 1998).

2.3. Generalized Additive Models
Hastie and Tibshirani (1986) proposed Generalized Additive Models (GAM). These models assume that
the mean of the dependent variable depends on an additive predictor through a nonlinear link function.
GAM extends the GLM by replacing the linear form

∑

j Xjβj with the additive form
∑

j fj(Xj). The
linear regression step in GLM is replaced by a non-parametric additive regression step, where the data is
used to determine the appropriate smooth function f . This is done through iterative smoothing operations
and allows for various non-linear effects of the explanatory variables.

The logistic additive model, when applied to binary response data, takes the form ln( π
1−π

) =
∑

j fj(Xj)

or π =
exp(

P
j

fj(Xj))

1+exp(
P

j
fj(Xj))

.

One of the main reasons for using GAM is that they do not involve strong assumptions about the
relationship between two or more variables that is implicit in standard parametric regression. Such
assumptions may force the fitted relationship away from its natural path at critical points. Also, since
each of the individual additive terms are estimated using univariate smoothers, GAM avoids the problem
of rapidly increasing variance for increasing dimensionality. This problem is referred to as the ”curse of
dimensionality” and is present in many nonparametric methods.

2.4. Feed-forward Neural Networks
We consider the supervised class of Neural Networks (NNs) called Multi-Layer Perceptrons. One hidden
layer is used and no skip-layer connections are allowed. The probability of belonging to class k is then
computed by

fk(x) = fo



αk +

M
∑

j=1

vjkfh(βj +

N
∑

i=1

wijxi)



 , (2.3)

from inputs to outputs. Here N,M and K are the number of input nodes (i.e. the number of explanatory
variables), the number of nodes in the hidden layer and the number of output nodes (i.e. the number of
possible classes), respectively. The activation function, fh(x), of the hidden layer is always taken to be

the logistic function fh(x) =
exp(x)

1+exp(x) , while the output activation function, fo(x), may either be logistic

or linear (Aas et al., 1999). We use the logistic output activation function only.

A NN with no hidden layers is identical to the GLM, while a NN with one hidden layer, where
the hidden layer uses nonlinear activation functions such as the logistic function, is nonlinear in the
parameters and corresponds to multivariate nonlinear logistic regression (Aas et al., 1999).
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Table 3.1. Explanatory variables employed and their definition. For the variables marked with
an asterisk the first differences are also investigated.

Variable Definition

REVANM No. of auditor remarks
AGE Age of firm
EKA* Equity share of total assets (solidity)
TKR* Return on capital employed (profitability)
UBE* Outstanding public dues to total assets
LEV* Trade credit to total assets
LIK* Cash minus short term debt to revenue from operations (liquidity)
LDEB* Consolidated long term liabilities to total assets
DIV* Dividends to total assets
INDUSTRY Which industry sector a firm belongs to
CurrentR* Current assets to current liabilities (liquidity)
QuickR* Current assets less inventory to current liabilities (liquidity)
RetAss* Return on assets (profitability)

3. Data

Our data sets are extensive collections of annual financial statements for all limited liability firms regis-
tered at the Norwegian register for business enterprises over the years 1996 − 2000. The 5 data sets all
include a company identification number, explanatory variables examined and the year of bankruptcy.
For firms that had not failed at the time of bankruptcy data extraction (2001), the year of bankruptcy
was set to 0. When referring to, for example, a model developed from 1996 data with a 2 year default
horizon, we mean a model developed from the 1996 financial statements, where a response variable Y is
set to 1 if the year of bankruptcy was 1997 or 1998 and 0 otherwise.

A particular feature of the data is the very small number of defaults. Of approximately 100, 000
firms each year only about 1% defaulted the next year. This is representative of bankruptcy prediction.
Bankruptcy is a rare and extreme event. However, since we have such a large data set, 1% of 100, 000
firms is still 1, 000 firms, we are able to develop and validate models in a proper manner.

3.1. Explanatory variables
The choice of, and investigation of explanatory variables is not one of the objectives in this paper. There
are several studies of properties, relationships and empirical selection of explanatory variables, see for
example Beaver (1966). The appropriate variables to use will vary with region and industry.

The explanatory variables considered here are found mainly in Bernhardsen (2001) and is a collection
of financial ratios, an industry indicator, the number of auditor remarks and some first differences of the
ratios. Through these first differences (the change since the previous year) we are able to utilize not only
the most recent financial statement data of a firm, but also data from the previous year. In a preliminary
analysis we removed variables that were not significant in any model. The remaining 13 variables and 10
first differences, i.e. 23 variables in total, are summarized in Table 3.1. First differences are included for
variables marked with an asterisk.

All variables, except for the industry indicator, the number of auditor remarks and the first differences,
are defined as the deviance from their industry mean. These variables will then reflect a firms risk
compared to other firms within the same industry.

4. Methodology

4.1. Model Development Framework
When developing models we include all the explanatory variables summarized in Table 3.1. In practice a
stepwise procedure should be applied to only include explanatory variables that add significant predictive
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power to the model. Since we develop and test so many models such a stepwise procedure is too time-
consuming.

We do not exclude variables that are highly correlated. The inclusion of highly correlated explanatory
variables may cause problems in practice, but only if interpretations of the individual effects of the
explanatory variables are attempted. When including highly correlated variables such interpretations
should be avoided, due to the phenomena multicollinearity. However, if a model is constructed solely for
the purpose of prediction, then multicollinearity will not be of concern.

When developing models we generally use 60% of the data set, randomly selected from the full data
set and referred to as the training set. The remaining 40% is used for validation and is referred to as the
out-of-sample test set.

4.2. Validation Framework
The performance statistics of models can be highly sensitive to the data sample used for validation. To
avoid embedding unwanted sample dependency, quantitative models should be validated on observations
of firms that are not included in the sample used to build the model. This is referred to as out-of-sample
validation in Sobehart et al. (2000).

If we develop a model from 1996 financial statements, using a two year default horizon, we are
predicting probabilities that firms will fail during 1997 − 1998. That means we can’t build this model
until 1999, when the 1998 data is available. The model can then be applied to 1998 financial statements,
predicting default probabilities for 1999 − 2000. But how good will the model perform on these 1998
data? Validating the model on 1998 data is referred to as out-of-time validation and is the measure most
interesting for practitioners. We investigate both out-of-sample and out-of-time validation.

To compare models we consider so-called power curves, visually indicating the predictive performance
of the various models. Power curves display the trade-off between Type I and Type II error for all possible
values of the measure of interest. Type I and Type II errors are the errors of misclassifying a bankrupt
firm as healthy, and misclassifying a healthy firm as bankrupt, respectively. In statistical terms, power
curves represent the cumulative probability distribution of default events for different default probabilities
(Sobehart et al., 2000).

While power curves is a convenient way of visualizing model performance, it is often desirable to
have a single measure that summarizes the predictive accuracy of each risk measure for both Type I and
Type II errors into a single statistic. We employ one of the metrics proposed in Sobehart et al. (2000),
namely the Accuracy Ratio (AR). This metric is obtained by comparing the power curve of the model
under investigation with that of the perfect model. The closer the power curve is to the perfect power
curve, the better the model performs. To calculate the summary statistic we focus on the area A that
lies above the power curve of a random model (the 45◦ line) and below the power curve of the model
under investigation. The larger the area below the curve and above the 45◦ line, the better the model is
doing overall. The maximum area B that can be enclosed above the 45◦ line is achieved by the perfect
curve. This maximum area is equal to 0.5. The ratio, A/B is referred to as the Accuracy Ratio (AR). It
summarizes the predictive power over the entire range of possible risk values and is a fraction between 0
and 1.

To compare models we employ a resampling scheme where several subsets are resampled, randomly,
from the full test set. For each of these subsets the AR is calculated and a t-test is performed to
determine if a model performs significantly better than another, at a certain confidence level. When
validating models, we sample 100 subsets, each consisting of 5000 firms, hence we have 99 degrees of
freedom for the Student-t distributed variable. We use a 99.5% confidence level.

5. Model Comparison

We now present the results from a comparison of two year default horizon models. Linear discriminant
analysis (LDA), generalized linear models (GLM), generalized additive models (GAM) and single-hidden-
layer neural networks (NN) are compared. For the NN models we use a weight decay of 0.01. We use an
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Table 5.1. Accuracy Ratio means and standard deviations for various default prediction mod-
els. 1996 data, two year default horizon, out-of-sample validation.

Model AR Mean AR Std

LDA 0.713 0.03
GLM-Logit 0.720 0.04
NN 0.723 0.05
GAM-Logit 0.773 0.04

Table 5.2. Significance indicators stating whether or not a model performs significantly better
than the models above. The combination ’TF’ indicates that a model does and does not per-
form significantly better than the uppermost model and the model directly above it in the table,
respectively. Two year default horizon, out-of-sample validation, 99.5% confidence level.

Model 1996 1997 1998 1999

LDA - - - -
GLM-Logit F T F F
NN FF TF TT TT
GAM-Logit TTT TTT TTT TTT

accuracy ratio maximizing function to determine the optimal network size. The network size corresponds
to the number of nodes in the hidden layer, M in Equation (2.3). The output function fo(x) is chosen
to be logistic.

5.1. Out-of-sample Validation
We first perform out-of-sample validation. We develop one model from the 1996 training set and test this
model on the 1996 out-of-sample test set. We then develop one model from the 1997 training set and test
this model on the 1997 out-of-sample test set, and correspondingly for the 1998 and 1999 data sets. The
results for the 1996 models are displayed in the left graph of Figure 5.1, showing the power curves of each
model. The LDA, GLM and NN models seem to perform equally well, while the GAM model seems to
outperform the others. To confirm this visual impression we look at the sampled AR statistics, displayed
in Table 5.1. We see that all models have approximately the same standard deviation and that the GAM
model has a higher mean than the other models. Table 5.1 shows whether or not a model performs
significantly better than the models above it in the table, from left to right, the uppermost model to the
model directly above. The table includes the results of the 1996, 1997, 1998 and 1999 models. For the
1996 models our visual impression from the power curves is confirmed. There is no significant difference
between LDA, GLM and NN while GAM significantly outperforms the others. For the 1997 models the
GLM and NN models significantly outperform the LDA. For 1998 and 1999 the GLM does not perform
significantly better than the LDA, but now the NN performs significantly better than the GLM. For
all years the GAM model, with a confidence level of 99.5%, performs significantly better than all other
models tested.

5.2. Out-of-time Validation
The results from the out-of-sample validation are interesting, but not exactly what we are interested
in. We seek the performance on future data, hence we perform out-of-time validation on the 1998 data.
The resulting power curves are displayed in the right graph of Figure 5.1, and the corresponding AR
statistics are displayed in Table 5.2. The significance indicator tells us whether or not a model performs
significantly better than the models above it in the table. We see that GAM still significantly outperforms
all the other models. LDA, GLM and NN do not differ significantly. At high risk levels it seems like
the NN model performs almost as good as the GAM, but as we move towards lower risk levels the GAM
model outperforms all the other models, including the NN. This nicely demonstrates the importance of
examining the model at the appropriate levels of risk. Note that while it varies which model performs
second best, the GAM model seems to perform best at all levels of risk.
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(a) Out-of-sample validation.
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(b) Out-of-time validation on 1998 data.

Figure 5.1. Prediction power of LDA, GLM, NN and GAM models. 1996 data, two year default horizon, out-of-
sample and out-of-time validation.
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Table 5.3. Accuracy Ratio means and standard deviations for various models. The signif-
icance indicator states whether or not a model is significantly better than the ones above.
1996 data, two year default horizon, out-of-time validation on 1998 data, 99.5% confidence
level.

Model AR Mean AR Std Signif.

GLM 0.676 0.04 -
LDA 0.678 0.04 F
NN 0.695 0.04 FF
GAM 0.726 0.04 TTT

Table 6.1. Accuracy Ratio means and standard deviations for GAM models as default horizon
varies. The significance indicator states whether or not a model performs significantly better
than the models above it in the table. 1996 data, varying default horizons, out-of-sample
validation, 99.5% confidence level.

Default Horizon AR Mean AR Std Signif.

5 years 0.672 0.02 -
4 years 0.701 0.03 T
3 years 0.732 0.02 TT
2 years 0.760 0.04 TTT
1 year 0.784 0.07 TTTT

6. Default Horizon

The term default horizon refers to the time horizon for which the model tries to predict. A one year
default horizon model will define firms that fail during the first year after model development as default,
while a two year default horizon model will define firms that fail during the first two years as bankrupt.

There are several reasons why the default horizon is important to consider. When entering a credit
derivative contract for example. The time period of the contract will determine the default horizon. Or
say the intended use is credit granting decision making. Then the highest prediction power is achieved
by choosing a short default horizon, but this will ’hide’ firms that are in distress but not as urgent and
severe as those identified by the model. Alternatively, choosing a long default horizon will yield early
warnings of distress, enabling preventive actions. Perhaps the best solution is to continuously use several
models, each serving their own specific purpose.

We develop several GAM models on the same data set (1996), but with varying default horizons. In
order to test a default horizon up to five years, we perform out-of-sample validation. Figure 6.1 shows
the results and we clearly see that the performance is reduced as the default horizon is increased. This is
an expected, but nevertheless important result, and practitioners should keep this in mind when choosing
a default horizon and assessing model risk. Table 6 displays the results from the resampling procedure,
and we see that the performance is reduced significantly for each year added to the default horizon.

By looking at which explanatory variables prove most significant we find that the longer the default
horizon the more variables proved significant. This is especially evident if we compare 1 and 5 year default
horizons. This indicates that signs of short term financial distress can be detected by looking at quite few
variables. In general we can conclude that for longer default horizons the signs of distress are not so easily
detected and much more complex interrelational structures are present. In such cases good statistical
models are crucial for detecting important information and insight regarding the riskiness of firms. We
also note that for all models the strongest variables are the ones we expected would be dominating:
number of accountant remarks, age, industry, outstanding public dues and trade credit.

7. Performance Depreciation

When developing a model one might wish to keep this model for some time. In this case it is very
important to be aware of the depreciation rate of the model. If for example a bank wishes to exclude
80% of the defaults at all times, the cut-off point needs to be adjusted as the model depreciates. This
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Figure 6.1. Power graph indicating discriminating power as default horizon varies. GAM models, 1996 data, out-of-
sample validation.

depreciation is also very important to consider if we are to attempt to estimate the model risk. These
are some reasons to examine the depreciation rate of bankruptcy prediction models as time goes by.

Let us look at how the performance of a one year default horizon model depreciates as time goes
by. When performing out-of-time validation in Section 5.2 this was basically what we did. We built a
two year default horizon GAM model on the 1996 data and tested its performance on 1998 data, that
is 2 years into the future. We now repeat this exercise and test the 1996 model on 1996, 1997, 1998,
1999 and 2000 data, that is 0 − 4 years into the future. Table 7 shows us the AR statistics from the
resampling procedure. We see that there is a big decrease in mean performance from 0 to 1 year ahead.
We also see that there is no significant difference in performance on data 1 and 2 years ahead. From
2 to 3 and 4 years ahead we again see a significant decrease in performance. Figure 7.1 shows us the
power curves for the models tested. This figure adds important information compared to the numbers
in Table 7. An interesting property seen is that the performance stays quite good, even 4 years into
the future for high risk levels. However, the figure shows that to maintain an exclusion of for example
80% of the defaults, the cut-off point will have to be drastically increased as time goes by. We also note
that the greatest depreciation happens the first year. The model performs much better on out-of-sample
data than on out-of-time data. This is a natural effect of overfitting. The depreciation from 3 to 4 years
ahead is relatively small in comparison. The point discussed in Section 4.2, of models performing better
than others at some risk levels but worse at other risk levels is also nicely demonstrated. Consider the
performance 1 and 2 years ahead, we see that the model seems to perform better 1 year ahead for high
risk values, that is when approximately 0 − 18% of the population is excluded, while it performs better
2 years ahead if more than 18% of the population is excluded.
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Figure 7.1. Predictive power depreciation 0 − 4 years into the future for a GAM model. 1996 data, one year default
horizon.

Table 7.1. Accuracy Ratio means and standard deviations showing performance depreciation
as time goes by. The significance indicator states whether or not a model performs signifi-
cantly better than the models above. 1996 data, one year default horizon, 99.5% confidence
level.

No. yrs into future AR Mean AR Std Signif.

4 0.699 0.09 -
3 0.735 0.08 T
1 0.756 0.08 FT
2 0.770 0.07 FTT
0 0.824 0.06 TTTT
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Table 8.1. Accuracy Ratio means and standard deviations for the M98 and M96−98 models.
Standard deviations in parentheses. The significance indicator states whether or not the
M96−98 model performs significantly better than the M98 model, with a confidence level of
99.5%. One year default horizon, out-of-sample and out-of-time validation.

Test Data M96−98 M98 Signif.

1998 0.780 (0.06) 0.752 (0.07) T
1999 0.755 (0.07) 0.707 (0.09) T
2000 0.759 (0.08) 0.747 (0.09) F

8. Multi-Year Model

We suspect that several actors in the market use only the most recent data when building bankruptcy
prediction models. This is justified by the fact that the most recent data best reflect the characteristics
of the data on which it will be used. But then the assumption is made that these characteristics change
from year to year, and if this is true then the developed model will not be interesting anyway since it
will only be applicable on contemporary data. So we must assume, unless we have good reason to believe
otherwise, that the characteristics driving bankruptcy are constant. And if this is constant we should
include as much data as possible when developing the model, since more data will give better estimates
of default risk. Considering this and having seen the depreciation of models as time goes by, we compare
a one-year model with a multi-year model. The one-year model is built on 1998 data while the multi-year
model is built on data from three consecutive years, 1996 − 1998. Both models are one year default
horizon GAM models. For the multi-year model we utilize much more data than for the one-year model.
Henceforth we will refer to the multi-year model and the one-year model as M96−98 and M98 to ease
notation. The subscript denotes the years of data used to develop the model.

There are several arguments to consider multi-year models, in addition to those already mentioned.
We are able to utilize more data, giving our models a better basis for detecting signs of distress. The
significance of variables in a multi-year model is less dependent on the macroeconomic conditions specific
to one year. A model, developed on one year of data only, will build signs of distress specific to that
year into the model. A multi-year model on the other hand is expected to smooth out such year-specific
effects. This way we would expect a multi-year model to be more robust than a one-year model, making
it interesting for practitioners, especially those who know there might be some years until a new model
is developed.

We developed several one year default horizon GAM models, one model for each year of data. Out-of-
sample validation for each of these models shows that the out-of-sample performance varies quite much
from year to year. This justifies considering a multi-year model. We never know if next year will be a
good or bad year for model development. By using several years of data we better guard ourselves against
such yearly fluctuations.

We perform out-of-sample validation, testing the models on the 1998 data, and out-of-time validation
on 1999 and 2000 data. Unfortunately we do not have data that enables us to test the performance of the
multi-year model more than two years into the future. However, Table 8, still shows us interesting results.
We see that M96−98 is more robust than M98, as expected. The AR for M98 falls quite low for the 1999
test data while the multi-year model performs well for all test sets. The resampling procedure shows that
M96−98 performs significantly better than M98 on the 1998 and 1999 test data, with a confidence level of
99.5%. On the 2000 data there is no significant difference in performance. The fact that the multi-year
model outperforms the one-year model on the 1998 data is interesting. Apparently the 1996− 1997 data
adds information about the 1998 out-of-sample test set, that the 1998 training set does not include.

9. Summary and discussion

We have shown, through out-of-sample and out-of-time validation, that generalized additive models
significantly outperforms other models like linear discriminant analysis, generalized linear models and
neural networks.
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If the IT system prevents the implementation of GAM models or the method is deemed non-intuitive
and hard to justify to managers, an approximation can be used. One can define dummy variables, a
number of variables each representing an interval of the values of the original variable, often referred
to as binning. For example d1 = 1{DIV ≤0}, which means that d1 will equal 1 if DIV is less than or
equal to zero, and zero otherwise. Then a regression is performed with all the dummies. This will be
an approximation since it allows for non-linear effects. The advantage is that it is very easy to explain
the effect and meaning of each variable and that once the dummies are defined all we need to do is
apply simple linear or ridge regression on the dummies. The disadvantage is the process of defining the
intervals for each dummy. This process can be subjective and cumbersome if not automated. Also, the
advantage of interpretation comes with a price, variables that are highly correlated must be excluded
from the model to avoid multicollinearity problems.

We recommend further use of the out-of-time validation framework, employing resampling procedures.
The ability to say whether a model is significantly better than another, given a certain confidence level,
is of uttermost importance and is best achieved by resampling. Also, power curves adds valuable visual
information about performance at different levels of risk. In practice one may only be interested in the
performance for certain risk levels. In this case one can simply modify the AR-calculation to only consider
the risk levels of interest.

Further we have shown how sensitive models are to the choice of default horizon. This is important to
consider when for example negotiating a credit derivative contract and for banks monitoring and actively
managing their portfolios.

We also examined the depreciation rate of models. This is very important to consider when deciding
on desired levels of risk and cut-off points and also when estimating model risk. Figure 7.1 nicely
demonstrates the need for cut-off adjustment as time goes by.

Finally we compared a one-year model, estimated from one year of data, with a multi-year model,
estimated from three consecutive years of data. The multi-year model performed significantly better
on out-of-sample test data and also on some out-of-time test data. The multi-year model seemed to
be more robust, performing stable across the test data sets while the one-year model performed rather
poor on one of the test data sets. The main reason for the multi-year model outperforming the one-year
model is believed to be the size of the training data set. Unless there are good reasons to believe that
the characteristics driving bankruptcies have changed, we argue that data from several years should be
utilized. An interesting issue for further research would be finding how far back it is optimal to go. More
data is needed to do such a study.
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